Emulsions

BY

Dr. Jarupa Viyoch

Dept. of Pharmaceutical Technology (2106)
Scope

- Definition
- Composition
- Type of emulsions
 - Determination
 - Test
- Selection of ingredients
- Emulsion consistency
- Emulsion theory
- Emulsifying agent
- Preparation
- HLB system
- Stability
Emulsions

heterogenous systems of one liquid dispersed throughout another in the form of droplets usually exceeding 0.1 micrometre in diameter
Compositions

Internal/Discontinuous/Dispersed phase
External/Continuous phase
Emulsifying agent

Forms

Liquids
Semisolids
Emulsion Types

1. oil-in-water (o/w)
2. water-in-oil (w/o)
3. water-in-oil-in-water (w/o/w)
4. oil-in-water-in-oil (o/w/o)
Determination of Emulsion Types

- By phase ratio between oil and water phase
- By order of addition
 slowly add oil into water \rightarrow o/w
- By type of emulsifier
 phase that the emulsifier is soluble will most probably be continuous phase
Tests for Identification of Emulsion Types

- Dilution test:
 Emulsion can be diluted only with external phase
- Dye test:
- CoCl$_2$/filter paper test:
 Filter paper impregnated with CoCl$_2$ and dried (blue) changes to pink when o/w emulsion is added
- Fluorescence:
 Oils fluoresce under UV light
- Conductivity: for ionic o/w emulsions
 O/w emulsions conduct electric current
Choice of Emulsion Types

- Fats or oils for oral administration:
 - o/w is formed to mask unpleasant taste

- For i.v. administration:
 - o/w
 - w/o

- For external application:
 - o/w
 for water soluble drugs
 easily wash from skin
 non greasy texture
- w/o

occlusive effect influence the absorption of drugs

cleansing skin

moisturizing creams (designed to prevent moisture loss from skin)
Choice of Oil Phase

- The type of oil affects:
 - viscosity
 - spread
 - film forming
 - the transport of drug into skin

- i.e. liquid paraffin (hard, soft and light liquid paraffin), silicone, beeswax, fatty alcohol and so on
Emulsion Consistency

Texture or feel of a product
- viscosity

Rheological properties of emulsion can be controlled by:
1. Volume concentration of dispersed phase:
 if increase \rightarrow viscosity of product increase
 if above about 60% \rightarrow phase inversion
2. Particle size of disperse phase:
 - decrease size \(\rightarrow\) increase viscosity
 - small globule \(\rightarrow\) increase flocculation
 - polydispersed system \(\rightarrow\) lower viscosity

3. Viscosity of continuous phase

4. Nature and concentration of emulsifying system
Purpose of Emulsions

Oral formulation
1. Enhancing bioavailability
2. Giving controlled rate of drug release
3. Affording protection to oxidation or hydrolysis

Topical formulation
1. Easily applied and can be formulated to eliminate oiliness and staining
2. Carrying water which is an excellent softener to skin
Emulsion Theory

- To explain how emulsifying agents act in promoting emulsification and in maintaining the stability of the resulting emulsion

- Surface tension theory (important in initial formation)
 The force causing each liquid to resist breaking up into smaller particle is called interfacial tension. Surfactants promote the lowering of this resistance

- Surface orientation theory
 Emulsifying agent having a greater hydrophilic character than hydrophobic character will promote an o/w emulsion
- Plastic or interfacial film theory
 emulsifying agent surrounding the droplets of the internal phase as a thin layer of film adsorbed on the surface of the droplets, prevent the contact and coalescing of the internal phase

- Rate of coalescence theory

- Phase volume theory
Film

- Monomolecular film
- Multimolecular film
- Solid particle film

\[E = \gamma_{o/w}^2 (1 - \cos \theta) \]

\(E \) = the energy to expel an absorbed particle from the interface into the phase that it is predominant wet.

\(\theta \) = its contact angle between solid and water phase.
interface
most stable

\[
\begin{align*}
\gamma_{s/w} &< \gamma_{s/o} \\
\gamma_{s/w} &> \gamma_{s/o}
\end{align*}
\]

o/w w/o
Mechanism

• To form droplets
 - surface free energy or surface tension
 - system at its lowest free energy is thermodynamically stable
 - emulsions are not thermodynamically stable

• To stabilize droplets (by surfactants or polymers)
 - by reducing the interfacial tension
 - by packing of the emulsifier molecules
Microemulsions

- The droplet size is below 0.15 micrometer
- Transparent
- Form spontaneously during preparation
- Thermodynamically stable (no change spontaneously, and if forced to change, it will return to the stable state)
Emulsifying agents

- must be present at the interface to prevent coalescence of the internal phase:
 1. To reduce the interfacial tension

 2. To be interfacial barrier (most influence on emulsion stability)
 - increase viscosity of continuous phase
 - energy barrier
 - the electric double layer
 - the steric repulsion from absorbed polymer
Compositions

- Emulsifying agents, Emulsifiers, Emulgents, Surfactants
 - primary
 - auxiliary

- The other formulation additives
 1. Preservatives: MP:PP 10:1
 2. Antioxidants: BHT, BHA etc.
 3. Humectants: propylene glycol, glycerol, sorbitol
Fact of Emulsifying Agents

- Structure
 - polar group
 - hydrocarbon

- Reside at interface

- When the concentration is increased in excess of CMC (the critical micellization concentration), micelles is formed
Properties

1. Compatible with the other ingredients
2. Not interfere with the stability or efficacy of the therapeutic agent
3. Stable and not deteriorate in the preparation
4. Nontoxic
5. Little odor, taste or color
6. Promote emulsification and to maintain the stability
Emulsifier Classification

According to ionic composed of an organic lipophilic group (surface active portion)

- Synthetic and semisynthetic surfactants
 - Anionic
 - Cationic
 - Nonionic
 - Amphoteric

- Naturally occurring materials and their derivatives
Anionic Surfactants

- Soaps
 - Fatty acid + Base \rightarrow Soaps
 - o/w emulsions
 - in acidic condition \rightarrow precipitated FFA
 - external use
 - combination of soap (TEA stearate) with an oil-soluble auxiliary emulsifier (cetyl alcohol) \rightarrow o/w mixed emulsifier
 - incompatible with polyvalent cations
Anionic Surfactants (cont.)

- Soap of di/trivalent metal
 Cal oleate \rightarrow w/o emulsions
- Amine soaps: $N(CH_2CH_2OH)_3$
 neutral pH
 incompatible with acids and high concentration of electrolytes

- Sulfated and sulfonated compound:
 - SLS
 stable over high pH range
 o/w emulsions
- Sulfated and sulfonated compound (cont.)
 - SLS
 fairly resistant to divalent metal ions
 used in combination with a nonionic oil-soluble emulsifying agent or fatty alcohol to produce a good emulsions

- sodium dioctylsulfosuccinate
 used as wetting agent
Cationic surfactants

- Quaternary ammonium compounds: Cetyl trimethylammonium bromide (Cetrimide) $\text{CH}_3(\text{CH}_2)_{15}\text{N}^+(\text{CH}_3)_3\text{Br}^-$

- Used with nonionic, oil-soluble auxiliary emulsifiers

- Toxicity and irritancy

- Incompatible with anionic surfactants, polyvalent anions and unstable at high pH
Nonionic surfactants

- Low toxicity and irritancy oral, parenteral
- High degree of compatibility
- Less sensitive to change pH or to addition of electrolytes
- Most of them are based on:
 1. Hydrophobic part: FA or alcohol (C_{12-18})
 2. Hydrophilic part: alcohol (-OH) and/or ethylene oxide (-OCH_2CH_2)
Nonionic surfactants (cont.)

- Glycol and glycerol esters
 - Glyceryl monostearate (a polyhydric alcohol FA ester):
 - strongly hydrophobic material
 - produce w/o emulsions
 - Self-emulsifying glycerol monostearate
 - soap + glycercyl monooleate
 - diethylene glycol monostearate
 - propylene glycol monooleate
Nonionic surfactants (cont.)

- Sorbitan esters
 - the esterification of 1 or more of the hydroxyl groups of sorbitan with either lauric, oleic, palmitic or stearic acid
 - tend to form w/o
 - used with polysorbates to produce o/w or w/o
Nonionic surfactants (cont.)

- Polysorbates (Tween)
 - polyethylene glycol derivatives of the sorbitan ester

 - variation in water solubility based on:
 - type of FA
 - the number of oxyethylene gr. in the polyethylene glycol chains

 - compatible with most anionic, cationic and nonionic materials
• Polysorbates (cont.)
 - provide neutral pH and stable to the effects of heat, pH change and high conc. of electrolytes

 - low toxicity

 - unpleasant taste

 - form complex with preservatives
• Fatty alcohol polyglycol ethers
 - condensation products of polyethylene glycol and fatty alcohols: polyethylene glycol monocetyl ether (Cetomacrogol 1000)

 - high water solubility

 - stable over a wide pH range

 - salted out by high conc. of electrolytes

 - o/w emulsions (should used with oil-soluble auxiliary emulsifier: Cetostearyl alcohol)
• Fatty acid polyglycol esters
 - stearate esters or polyoxyl stearates
 - i.e. polyoxyethylene 40 stearate (40 = the no. of oxyethylene units)
 water-soluble
 used with stearyl alcohol to give o/w

• Poloxalkols
 - polyoxyethylene/polyoxypropylene copolymers
 - used for i.v. fat emulsions
• Higher fatty alcohol
 - saturated aliphatic monohydeic alcohols: hexadecyl (cetyl), octadecyl (stearyl)

 - used as auxiliary emulsifiers according to their ability to increase viscosity

 - i.e.

 cetostearyl alcohol + SLS/ Cetrimide/
 Cetomacrogol 1000 → o/w
Amphoteric surfactants

- charge depending on the pH of the system
 - low pH → cationic
 - high pH → anionic

- i.e. lecithin: used to stabilize i.v. fat emulsion
Naturally Occurring Materials and Their Derivatives

Disadvantage
- batch to batch variation
- susceptible to bacterial and mold growth
- susceptible to alcohol, electrolytes

- Polysaccharides
 - i.e. acacia, tragacanth, sodium alginate
 - anionic
 - stabilize o/w (internal)
 - forming a strong multimolecular film (hydrophilic barrier) round oil globule
• Semisynthetic polysaccharides
 - to reduce batch to batch variation
 - as o/w emulsifiers or stabilizer
 - i.e. MC (nonionic), CMC (anionic)

• Sterol-containing substance
 - Beeswax: beeswax-borax
 - Wool fat (anhydrous lanolin)
 fatty alcohol with FA esters of cholesterol and other sterols
 form w/o
 emollient property
 water absorbing property
 odor: require antioxidant
- Sterol-containing substance (cont.)
 - polyoxyethylene lanolin derivatives
 - water soluble
 - o/w emulsifier
 - emollient property
 - wool alcohol
 - cholesterol together with other alcohols
 - w/o emulsifier
 - no strong odor (but still require antioxidant)
- Protein substances
 - i.e. gelatin, egg yolk and casein
 - o/w emulsifier
 - gelatin; provide emulsion that is too fluid
Finely Divided Solids

• i.e. bentonite, aluminium magnesium silicate, colloidal silicon dioxide
 - forming a coherent film which physical prevents coalescence of the dispersed globules
 - if the particles are:
 preferentially wetted by the aqueous phase \(\rightarrow \) o/w emulsion
 preferentially wetted by the oil phase \(\rightarrow \) w/o emulsion
Preparation

- Method depending on:
 - the nature of emulsion components
 - the equipment available
 - porcelain mortar and pestle
 - bottle
 - homogenizer/ hand homogenizer
 - colloid mill
Continental or dry gum method

- 4:2:1 oil:water:gum emulsion
- Emulsifier is triturated with the oil in perfectly dry porcelain mortar

 \[
 \text{2 parts of water are added at once} \\
 \text{triturate immediately, rapidly and continuously (until get a cracking sound)} \\
 \text{aqueous solution is added (alcohol the last, if any)}
 \]
bland oil should be added if oil is less than 20%

Prepare 50 ml (4:2:1)

<table>
<thead>
<tr>
<th>Rx</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciferol solution</td>
<td>0.15 ml</td>
<td></td>
</tr>
<tr>
<td>Glycerin</td>
<td>0.30 ml</td>
<td></td>
</tr>
<tr>
<td>Water to</td>
<td>5.00 ml</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rx</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciferol solution</td>
<td>1.5 ml</td>
<td></td>
</tr>
<tr>
<td>Arachis oil</td>
<td>8.5 ml</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>5.0 ml</td>
<td></td>
</tr>
<tr>
<td>Acacia powder</td>
<td>2.5 ml</td>
<td></td>
</tr>
<tr>
<td>primary emulsion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
English or Wet Gum Method

triturate gum with twice its weight of water in a mortar

down

oil is added slowly in portions

down

the mixture is triturated

down

after adding all of the oil, thoroughly mixed for several minute

Caution: the mixture become too thick (ropy) during the process, additional water may be blended
Bottle or Forbes Bottle Method

- Extemporaneous preparation for volatile oils or oil with low viscosity

gum + 2 parts of oil (dry bottle)

 ↓

 shake

 ↓

 water (volume equal to oil) is added in portions

 ↓

 shake
Beaker Method

Oil phase: heated about 5-10 degree above the highest melting point of ingredient (water bath)

Water phase: heated to the same temperature of oil phase (water bath)

Add: internal phase into external phase, mix, constant agitation being provided throughout the time of addition

Caution: - not to heat the phase above 85 degree
- rate of cooling determining the final texture and consistancy